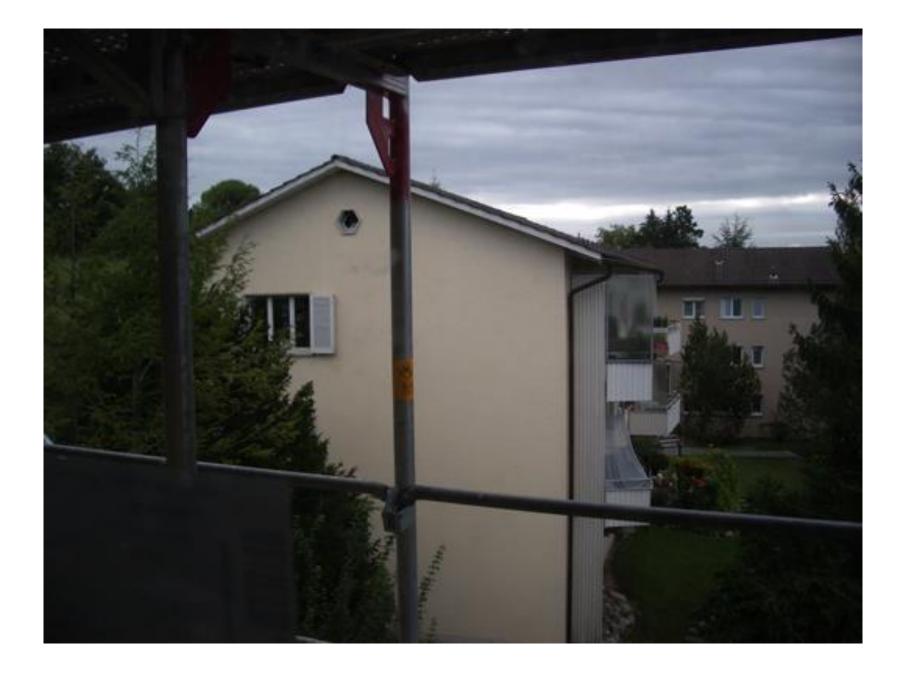
EAUC Sust Construction TSN 29 April 2015

PASSIVHAUS RETROFITS IN ZURICH AND GRAZ Lessons for Scotland

Prof Colin Porteous Mackintosh Environmental Architecture Research Unit (MEARU) Mackintosh School of Architecture, The Glasgow School of Art IEA ECBCS Annex 50 Prefabricated Systems for Low Energy Renovation of Residential Buildings


Building Renovation Case Studies

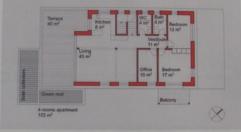
IEA ECBCS Annex 50 Prefabricated Systems for Low Energy Renovation of Residential Buildings

Building Renovation Case Studies

March 2011

Key points of renovation

Maximization of li ving s urfaces with the construction of a new attic apartm ent and an extension of the ground floors.


Renovation of the building envelope in M inergie-P standard (Passive Hou se standar d), with preservation of the architectural quality.

Substitution and installation of Figure 6: Floor plan of added penthouse apartment new building t echnology s ystems: new h eating system, but keeping the ol d radi ators, new ventilation s ystem, new hot domestic water system, and new electric installations.

Use of ren ewable en ergy: ground source heat-pump, solar collectors, a nd horizontal PVsystem on the roof.

Inner refurbishment: new bathrooms and kitchens

Refurbishment with taking care to rec ycle exi sting str uctures and materi als, i n order to minimize the consumption of grey energy.

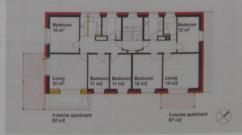


Figure 7: Floor plan showing the changes of the renovated building

IEA ECBCS Annex 50 Prefab Retrofit

Demonstration project

Zurich

Renovation design details

Facade solutions

The construction of the prefabricated large façade modules ments were taken b y the University of Applied Sciences of North-Western Switzerl and by ting facade s. The goal was to produce the elements based on this data. Because of diffic ulties to configure the data of the geometer to the needs of the architect, the contractor took also ow n meas ures. The new, large s cale el ements i n timber construction had to fit on the imprecise and curved old walls. Because o f this difficulty, cellulose insulation was used in order to fill all the gaps. The connections b etween t he ne w windows and the old walls was covered b y pl asterboard and tightened by sealing tapes. The air-tightness of the renovated structure is excellent.

U-value: 0.	18 W/(m ² ·K)	Prefabricated element:	
Interior rendering	10 mm	Tolerance / thermal insulation	
Brick wall	320 mm	(cellulose)	20 mm
Exterior rendering	20 mm	Insulation (cellulose)	180 mm
		Wood fibre board	40 mm
		Exterior rendering	10 mm
		Total (incl. existing wall)	600 mm

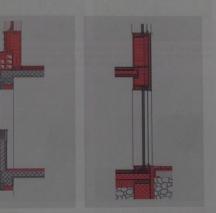


Figure 8: Horizontal section of Figure 9: Vertical section with hori-façade element with integrated ven-zontal ventilation distribution Figure 10: Vertical section of living room extension

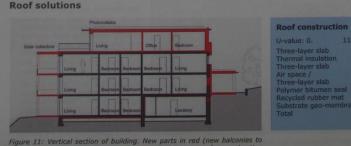
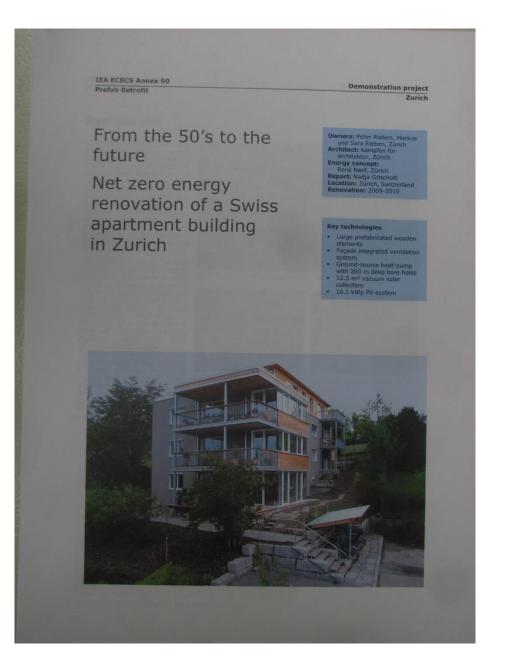



Figure 11: Vertical section of building. New parts in red (new balconies to the South, additional penthouse apartment, building annex for new heating

I-value: 0.	11 W/(m ² ·K)
hree-layer slab	27 mm
hermal insulation	360 mm
hree-layer slab	27 mm
ir space /	
hree-layer slab	200 mm
olymer bitumen s	eal 10 mm
ecycled rubber m	at 7 mm
	nbrane 60 mm
	691 mm

Construction process

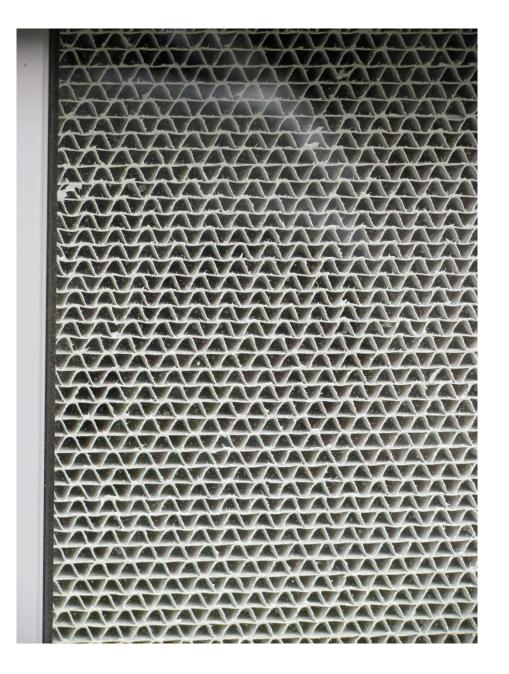
Figure 18: The on-site preparation is done by leveling laths. In-between the distribution system and supply pipes are installed.

Figure 19: The solar collectors were integrated into the prefabricated modules. (Source: Gap-Solution GmbH)

The r enovation p roceeded very smoothly :

The on -site prepa ration comprised the installation of the levelling laths, wh ere in between the heat distribution panels a nd supp ly lin es were mounted. Afterwards the remaining space was filled with rock-wool. T he modu les we re brought by a I ow-loader to the building site, lifted by a truckmounted crane to the facade. Additionally on eac h si de two assembly op erators supp orted the fitting pro cedure. After the entire facade was co vered with the new modules th e old windows were rem oved from the inside, the vapour barriers were seal ed (bui lding angles, window-reveal,...) and the collectors we re connected to the supply pipes.

Figures 20-22: Sequence of assembly of the modules on the southoriented façade (Source: Gap-Solution GmbH)

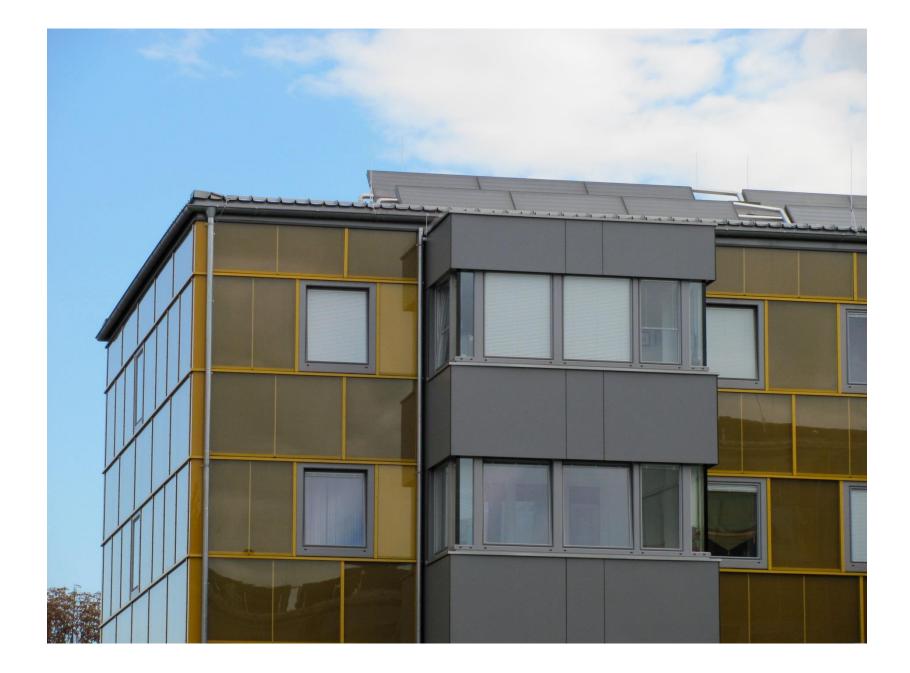


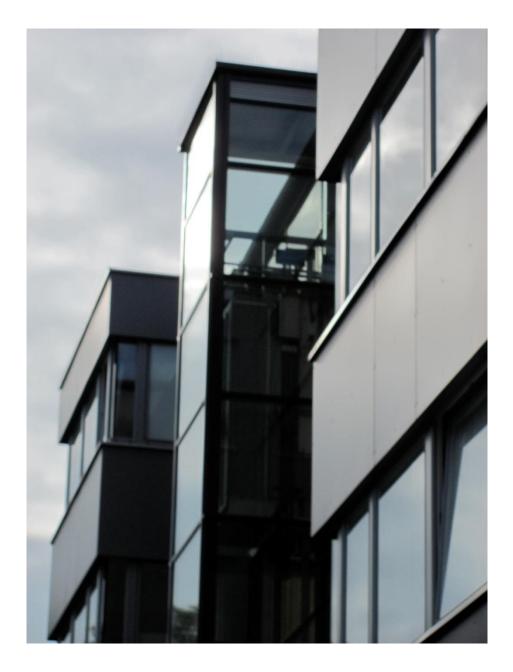
Solar 'honeycomb' detail: Architekturburo Hohensinn, 2007-2010

Laver composition of basic facade module

Renovation design details

The state	1	5
111		
'n		
	T	ted status
	m	


Facade solutions


Figure 7: Pre-fabricated façade module

Layer composition of basic facade module					
Existing wall	10 mm 300 mm 25 mm	Internal plaster Existing exterior wall External plaster			
On-site installation	100 mm	Levelling laths In-between rock-wool			
Pre-fabricated module	18 mm 120 mm 15 mm 30 mm 29 mm	OSB-board Timber frame between rock wool MDF- board Solar comb Rear ventilation			
	6 mm	Toughened safety glass			

 'On-site installation' includes heating serpentine embedded in XPS board on face of original wall; principle by Austrian Architect, Walter Unterrainer, cold U-value 0.2 falls to 0.13 W/m²K mean, and often below zero; predicted heat demand 12 kWh/m² annually, i.e. 3 kWh/m² below PassivHaus standard.

